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Abstract

A normal modes analysis of the closed form of dimeric citrate synthase has been
performed. The largest-amplitude collective motion predicted by this method compares
well with the crystallographically observed hinge-bending motion. Such a result supports
those obtained previously in the case of hinge-bending motions of smaller systems, such
as lysozyme or hexokinase. Taken together, all these results suggest that low-frequency
normal modes may happen to become useful for determining a first approximation of the
conformational path between the closed and open forms of these proteins.

Keywords: collective motion, normal modes analysis, low-frequency motion, hinge-bend-
ing, closed form of citrate synthase.



Introduction

In many proteins, large conformational transitions involve the relative movement of almost
rigid structural elements. In citrate synthase, a two-domain protein, coenzyme A binding
induces a 18° rotation of the small domain around an axis close to residue 274, which repre-
sents the hinge [1, 2, 3]. One consequence of this motion is the closure of the cleft between
the two domains, in which the substrate binding site lies (see Fligure 1). As in other cases -
hexokinase [4], phage T4 lysozyme [5], etc - such a hinge-bending motion has been probed
from X-Ray crystallography.

One of the best suited theoretical methods for studying collective motions in proteins is the
normal mode analysis [6], which leads to the expression of the dynamics straightway from the
superposition of collective variables, namely the normal modes coordinates. Until recently,
the normal mode analysis had been applied mostly to small-size proteins (200 residues or
less). Actually, proteins in which hinge-bending occurs and that have been studied so far
with this method are the hen-egg white lysozyme [7], the human lysozyme [8, 9], the phage
T4 lysozyme [10] and hexokinase [11]. In the two former cases, the lowest-frequency normal
mode (3.6 and 3.7 cm™!, respectively) compares well with the hinge-bending motion, as it
was previously calculated after an initial guess of the hinge axis [12]. In the case of the
rather large-size hexokinase (around 450 residues), two low-frequency normal modes (7 and
10 cm ™!, respectively) of the open form have strong components along the crystallographically
observed hinge-bending motion. Though interesting, these later results need to be confirmed
since they were obtained with both an approximate method [11] and an approximate protein
model (in particular, at the time this calculation was performed, the primary sequence of
hexokinase was only known from X-ray crystallography studies; it was later found to be only
30% identical to the exact one). In the case of phage T4 lysozyme, detailed analysis and
comparison with experimental data [5] have not been published yet.

We report here a normal modes analysis of the closed form of dimeric citrate synthase. In
order to study such a large system (around 900 residues), a new program, BLZPACK, was
written by one of us (0.M.).

Material and Method

The normal mode analysis is based on the following idea [6]. In the vicinity of a stationary
point, the potential energy of a system, V', can be approximated by:

3N 3N

V = %sz”(ﬁ — Tf)(T]' — ’I"j) (1)

=1 7=1

where k;;’s are the second derivatives of the potential energy with respect to coordinates r;
and r; and where 77 and r] are the ¢ and j coordinates of the stationary structure. With
approximation (1), the equations of motion of the N atoms of the system can be solved



analytically, leading to the following solutions:
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with:

q;(t) = Cj cos(wit + ¢;) (3)
which means that each atomic motion results from the superimposition of 3N independent
sinusoidal contributions - the normal modes; in these equations, m; is the atomic mass, C;
and ¢; are the amplitude and phasis, respectively, of normal mode j, which depend upon
initial conditions, w; is the pulsation of normal mode j, obtained as the square root of the
j-th eigenvalue of the mass-weighted second derivatives of the potential energy matrix, and
vector a; = (ay;,agj,...,asn;) is the j-th eigenvector of this matrix. Note that, at a given
temperature, the lower the frequency of a normal mode, the larger its amplitude. Typically,
for proteins, the normal modes whose frequencies lie under 30-100 cm™!
responsible for most of the amplitude of the atomic displacements [13, 14].

are found to be

As a consequence of computer progress and improvement in the algorithms dedicated to the
application of normal modes analysis to macromolecules [10, 15, 16, 17], large-size proteins are
more and more commonly addressed, such as G-Actin (3N ~ 11000) [18], Phosphoglycerate
kinase (3N & 12000) [19] or haemoglobin (3N & 17000) [20]. In the present case of dimeric
citrate synthase, the system we studied is made of 8528 atoms (3N = 25584), including
coenzyme A and the citrate substrate (CH, CHy and CHj3 were treated as extended atoms).

In order to compute the ten lowest-frequency normal modes of the closed form, besides the
six zero-frequency modes corresponding to the overall translational and rotational degrees
of freedom of the system, a Block Lanczos algorithm was used, with an inverted matrix
formulation [21, 22]. The basic idea behind the Lanczos algorithm is the generation of an
appropriate basis of vectors for the target problem, so that the projection of this problem
into such a basis leads to a smaller eigensystem. Note that the Block Lanczos algorithm
is not an approximate method. It converges towards the exact solutions of the eigenvalue
problem. In order to determine the aforementioned modes with a good precision, 120 vectors
were required (20 steps, with 6 vectors per block). This computation was performed on one
processor of a Cray C90, using 20 minutes of CPU time (it could have been performed on a
workstation as well, with 128 Mb of memory and 800Mb of disk space), while the preliminary
energy-minimization and matrix computations were performed on a IBM RISC6000/320H
workstation, with the CHARMm 21.3 program [23] and the same standard parameters and
options used in a previous methodological study [17]. In particular, a cutoff at 7.5 A was
used in the calculation of nonbonded interactions, with a shifting function for electrostatics,
and a switching function between 6.5 and 7.5 A for Van der Waals interactions [23].

Results and Discussion

The relative displacements of the Ca’s of monomer I of citrate synthase corresponding to
the lowest-frequency (2.59 cm™!) mode of the closed form are depicted in Figure 2c. These
displacements happen to compare well with the Ca difference vectors between the open



and closed forms (Figure 2a), i.e., the experimentally observed hinge-bending motion. The
comparison is even more convincing when the Ca difference vectors are computed between
the open form and the energy-minimized closed one (Figure 2b), i.e., the one we used to
perform our study. In order to quantify how similar is the hinge-bending motion to each of
the calculated normal mode motions, the corresponding overlaps were computed, as:
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crystallographic structures, respectively, after both had been superimposed. An overlap of

are the atomic coordinates in the closed energy-minimized and in the open

1.00 would mean that the patterns of both kind of atomic displacements are perfectly similar.
Though the normal modes were computed for the whole dimeric citrate synthase, the motions
of each monomer were analyzed separately. In the case of the lowest-frequency mode, and
when only atoms of monomer I are considered (Figure 2c), the overlap is 0.49. Some of the
other normal modes, like those occurring at 4.00 cm™! and 4.64 cm™', are also found to
contribute to the hinge-bending motion in monomer I (overlap of 0.39 and 0.21, respectively;
see Table I), as well as one of the three translational motions (overlap of 0.49; data not shown).
This latter result reflects the fact that the centres of mass of the two monomers are 3.2 A
closer in the closed form than in the open form of dimeric citrate synthase. For monomer
II, the results are somewhat different, the 3.16 cm~! normal mode being the closest to the
hinge-bending motion (overlap of 0.35; data not shown). The difference between the results
obtained for monomer I and II is primarily a consequence of the fact that we did not apply any
constraints during the preliminary energy-minimization process; in particular, the symmetry
between the structures of the two monomers, which was assumed by crystallographers, was
not imposed to the system. Thus, in the energy-minimized dimeric structure we studied,
monomers [ and II have slightly different conformations (see Figure 2b).

Conclusions

The present results of the normal modes analysis of dimeric citrate synthase support those
obtained previously for lysozyme [7, 8, 9, 12] and hexokinase [11]. In particular, the largest
amplitude motion of the closed form of citrate synthase was found to compare well with
the crystallographicaly observed hinge-bending motion. Note that this result was obtained
without any explicit information on the open form of citrate synthase. In particular, coenzyme
A - which is not present in the open structure - was included in our calculation (coenzyme
A is known to induce the closure of citrate synthase [1, 3]).

Taken together, all these results suggest that low-frequency modes may provide a useful
approximation for the conformational path between the closed and open forms of citrate
synthase. A method designed to obtain such a guess from low-frequency normal modes is
presently being developed by Mouawad and Perahia for the transition between the T and
R states of haemoglobin (Mouawad and Perahia; private communication). In their method,



starting from the T state, the protein is first displaced in the subspace defined by a few
low-frequency modes in such a way that it comes closer to the R state. Next, the energy is
minimized, the normal modes are computed, and the protein is displaced again in this newly
defined subspace. The process is then repeated until a point close enough to the R state is
reached. In the citrate synthase case, it will be interesting to compare the path obtained
with such a method with the two paths previously determined in our laboratory [24, 25]: one
with a modified version of the chain algorithm of Elber and Karplus [26], and the other one
with the “directed dynamics” algorithm of Ech-Cherif El-Kettani and Durup [24].
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Table I. Comparison of theoretical and experimental data: overlap between a;, the atomic
displacements corresponding to each normal mode j, and Ar, the difference vector between
the closed energy-minimized and the open crystallographic structures, i.e., the hinge-bending
motion in citrate synthase (see text).

Mode frequency | Overlap with

(em™1) hinge-bending
2.59 0.49
3.16 0.06
3.29 0.06
3.57 0.05
3.80 0.13
4.00 0.39
4.08 0.09
4.28 0.01
4.57 0.01
4.64 0.21




Figures captions

Figure 1. Crystallographic structures of dimeric pig heart citrate synthase, represented
with the Molscript program [27]. Top: closed form (file 2cts of Brookhaven Data Bank [28]).
Bottom: open form (file 1cts).

Figure 2. Comparison of experimental and theoretical data. Ca displacements (in A), as
a function of residue number, (a) between the open and closed crystallographic structures
of citrate synthase, after both were superimposed. The root-mean-square distance between
the two structures is 3.0 A (when only Ca atoms are considered). The largest secondary
structures displacements are those of helices N (residues 274-291), O (residues 297-312), Q
(residues 344-365) and R (residues 373-386); (b) between the open crystallographic and the
closed energy-minimized structures, after both had been superimposed. Continuous line:
monomer I. Dashed line: monomer II. Though the root-mean-square distance between the
closed crystallographic and the closed energy-minimized structures is 1.7 A, the overall char-
acteristics of the experimental hinge-bending motion are found to be not altered by the
minimization process. (c¢) 2.59 cm™! normal mode. The relative atomic displacements from
the closed energy-minimized structure of monomer I are computed according to equation (2),
C; being chosen in such a way that the potential energy cost is 3 kcal/mole. In order to
have atomic displacements as large as in the experimentally observed hinge-bending motion,
a potential energy of more than 400 kcal/mole would be required, according to the normal
mode theory.
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Figure 1: pig heart citrate synthase
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